Nonlinear elliptic

differential-functional equations
Pierre Bousquet
August 27th, 2010, Poitiers

A problem in the Calculus of Variations

$$
\begin{aligned}
\text { To minimize } & J: u \mapsto \int_{\Omega} L(\nabla u(x)) d x+\left(\int_{\Omega} G(x, u(x)) d x\right)^{\beta} \\
& u_{\mid \partial \Omega}=\phi
\end{aligned}
$$

Framework

- $\Omega \subset \mathbb{R}^{n}$, bounded open set,
- $\phi: \partial \Omega \rightarrow \mathbb{R}$ Lipschitz continuous,
- $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $G: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are C^{1}.

The Euler equation

$$
\begin{gathered}
\operatorname{div}[a(\nabla u)]+F[u](x)=0 \\
a(\xi)=\nabla L(\xi), F[u](x)=\beta\left(\int_{\Omega} G(x, u) d x\right)^{\beta-1} G_{u}(x, u)
\end{gathered}
$$

A nonlinear elliptic equation

$$
\begin{gathered}
\int_{\Omega} a(\nabla u) \cdot \nabla \eta-F[u] \eta=0 \quad \forall \eta \in C_{c}^{\infty}(\Omega) \\
u \in W^{1,1}(\Omega),\left.\operatorname{tr} u\right|_{\Omega}=\phi, a(\nabla u) \text { and } F[u] \in L_{l o c}^{1}(\Omega)
\end{gathered}
$$

Assumptions on a

- $a \in C^{0}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $\exists \mu>0$ s.t.

$$
\left(a(\xi)-a\left(\xi^{\prime}\right)\right) \cdot\left(\xi-\xi^{\prime}\right) \geq \mu\left|\xi-\xi^{\prime}\right|^{2}
$$

Assumptions on F

- $\forall M>0,|u|_{\infty} \leq M \Rightarrow|F[u]| \leq C(M)$,
- when $u_{n} \rightarrow u$ uniformly on $\bar{\Omega}$, then $F\left[u_{n}\right] \rightarrow F[u]$ a.e.
- growth assumptions:

$$
F[u](x) \operatorname{sgn} u(x) \leq C|u|_{2^{*}}^{\beta}|u(x)|^{\gamma-1} \text { with } \beta+\gamma<2
$$

$$
\int_{\Omega} a(\nabla u)(x) \cdot \nabla \eta(x)-F[u](x) \eta(x)=0 \quad \eta \in C_{c}^{\infty}(\Omega)
$$

Existence and regularity do not follow from the classical Schauder's theory:

- a is not even C^{1} but merely continuous,
- even if a were smooth, it would not necessarily satisfy

$$
\mu(1+|\xi|)^{\tau}|\zeta|^{2} \leq \sum_{i, j} \frac{\partial a^{i}}{\partial x i_{j}}(\xi) \zeta_{i} \zeta_{j} \leq \nu(1+|\xi|)^{\tau}|\zeta|^{2} \quad(\tau>-1)
$$

Existence does not follow either from Visik's theory

- requires the additional growth assumption

$$
|a(\xi)| \leq \nu|\xi|^{p-1}+\nu^{\prime}
$$

- so that for $\eta \in W^{1, p}(\Omega), a(\nabla u) \in L^{p^{\prime}}$

$$
\Longrightarrow a(\nabla u) . \nabla \eta \in L^{1}(\Omega) .
$$

Hartman-Stampacchia's strategy

Quasi solution $u \in \operatorname{Lip}_{\phi}(\Omega, K)$ is a K quasi solution $(K>0)$ if

$$
\int_{\Omega} a(\nabla u) \cdot(\nabla v-\nabla u)-F[u](v-u) \geq 0 \quad \forall v \in \operatorname{Lip}_{\phi}(\Omega, K) .
$$

Theorem

For each K, there exists a K quasi solution.

A priori bounds

- $L^{\infty}(\Omega)$ a priori bound on the K quasi solutions,
- $L^{\infty}(\Omega)$ a priori bound on the gradients of the K quasi solutions.

Convergence of the quasi solutions to a Lipschitz solution

L^{∞} bound on ∇u : Rado-Haar Lemma

For $\tau \in \mathbb{R}^{n}$ s.t. $\Omega \cap(\Omega-\tau) \neq \emptyset$, use as a test function of the quasi solution u

$$
u_{\tau}(x):=u(x+\tau)
$$

$$
\tau=x-y
$$

A maximum principle on the gradient

$$
|u(x)-u(y)| \leq \sup _{\substack{x^{\prime} \in \Omega, y^{\prime} \in \partial \Omega \\\left|x^{\prime}-y^{\prime}\right| \leq|x-y|}}\left|u\left(x^{\prime}\right)-\phi\left(y^{\prime}\right)\right|+C|x-y|
$$

Lower and upper barrier

Definition

$v: \Omega \rightarrow \mathbb{R}$ is a lower barrier at $\gamma \in \partial \Omega$ if there exists $Q>0$ s.t.

- $v \in \operatorname{Lip}(\Omega, Q)$,
- $v(\gamma)=\phi(\gamma)$,
- v is not larger than any K quasi solution on Ω, for any $K \geq Q$.

Rado Haar Lemma + barriers \Longrightarrow Lipschitz a priori bound

Definition (Bounded Slope Condition)

$\phi: \partial \Omega \rightarrow \mathbb{R}$ satisfies the bounded slope condition if it is the restriction of a convex function defined on \mathbb{R}^{n} and also the restriction of a concave function defined on \mathbb{R}^{n}.

The bounded slope condition

An existence theorem

$$
\begin{gathered}
\operatorname{div}[a(\nabla u)]+F[u](x)=0 \\
u_{\mid \partial \Omega}=\phi
\end{gathered}
$$

Theorem (Hartman-Stampacchia)

Assume that

- ϕ satisfies the bounded slope condition,
- $\left(a(\xi)-a\left(\xi^{\prime}\right)\right) \cdot\left(\xi-\xi^{\prime}\right) \geq \mu\left|\xi-\xi^{\prime}\right|^{2}, \mu>0$,
- $F[u]$ locally bounded, continuous + growth assumptions.

Then there exists a solution which is $W^{1, \infty}(\Omega)$.
The bounded slope condition: A restrictive condition

- Ω necessarily convex,
- ϕ is affine on the faces of $\partial \Omega$,
- ϕ is $C^{1,1}$ if Ω is $C^{1,1}$

The lower bounded slope condition

Definition

ϕ satisfies the lower bounded slope condition if ϕ is the restriction to $\partial \Omega$ of a convex function defined on \mathbb{R}^{n}.

Less restrictive than the full bounded slope condition

- does not imply the convexity of Ω
- ϕ is semiconvex when Ω is convex and $C^{1,1}$

A general principle due to Clarke
A lower barrier is enough to obtain local Lipschitz estimates when Ω is convex.

Dilations instead of translations

$$
\Omega_{\lambda}:=\lambda(\Omega-\gamma)+\gamma, u_{\lambda}(x)=\lambda u\left(\frac{x-\gamma}{\lambda}+\gamma\right)
$$

Existence of locally Lipschitz solutions

Theorem

Assume that

- Ω is convex,
- ϕ satisfies the lower bounded slope condition,
- $\left(a(\xi)-a\left(\xi^{\prime}\right)\right) \cdot\left(\xi-\xi^{\prime}\right) \geq \mu\left|\xi-\xi^{\prime}\right|^{2}, \mu>0$,
- $F[u]$ locally bounded, continuous + growth assumptions.

Then there exists a solution which is $L^{\infty} \cap W^{1,2} \cap W_{\text {loc }}^{1, \infty}(\Omega)$. Moreover, if Ω is a polyhedron, then u is Hölder continuous on $\bar{\Omega}$.

Implicit barriers and continuity I

Definition

An implicit barrier is a barrier obtained as the solution of an auxiliary problem stated on a larger domain $\Omega_{0} \supset \Omega$.

Let u be the solution obtained previously and $\gamma \in \partial \Omega$. We consider

$$
\left(E_{0}\right) \quad \operatorname{div}[a(\nabla v)](x)+F[u](x)=0, v_{\mid \partial \Omega_{0}}=\phi_{0}
$$

where Ω_{0} a cube enclosing Ω with $\gamma \in \partial \Omega_{0}$,

$$
\phi_{0}=\phi(\gamma)+K_{\phi}|x-\gamma|+L|x-\gamma|^{2} \quad \text { (for a suitable large } L \text {) }
$$

Implicit barriers and continuity II

$$
\phi_{0}=\phi(\gamma)+K_{\phi}|x-\gamma|+L|x-\gamma|^{2}
$$

- L large enough $\Longrightarrow \phi_{0}$ lower barrier for $\left(E_{0}\right)$
- 'the' solution u_{0} of $\left(E_{0}\right) \geq \phi_{0} \geq \phi$ and is continuous
- u_{0} is an implicit upper barrier at $\gamma: u_{0} \geq u$ on Ω.

Theorem

The solution u is Hölder continuous on $\bar{\Omega}$.

Nonconvex domains: a simple case

The radial case on an annulus

- $\Omega=B(0,2) \backslash \bar{B}(0,1)$ in \mathbb{R}^{n}
- $a(\xi)=l(|\xi|) \xi /|\xi|$
- $l: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$bijective
- $F[u]=0$
- $\phi=0$ on $\partial B(0,1)$ and
$\phi=C>0$ on $\partial B(0,2)$

The solution is

$$
u(x)=\int_{1}^{|x|} l^{-1}\left(\frac{\lambda}{r^{n-1}}\right) d r
$$

for a suitable $\lambda \in \mathbb{R}$.

An existence result on nonconvex domains

Theorem

Assume that

- Ω satisfies a uniform exterior sphere condition,
- ϕ is constant on each connected component of $\partial \Omega$,
- $a(p)=l(|p|) p /|p|$ continuous with $l(t)-l(s) \geq \mu(t-s), \forall s<t$,
- $F[u]$ is locally bounded, continuous + growth assumptions.

Then there exists a Lipschitz solution.

Sketch of the proof

A variational problem

$$
\begin{gathered}
\text { To minimize } J: u \mapsto \int_{\Omega} f(|\nabla u(x)|) d x \\
u_{\mid \partial \Omega}=\phi
\end{gathered}
$$

Theorem

Assume that

- f strictly convex, $f(|\xi|) /|\xi| \rightarrow+\infty$ when $|\xi| \rightarrow+\infty$,
- ϕ is Lipschitz continuous,
- Ω satisfies the uniform exterior sphere condition.

Then the solution u is continuous on $\bar{\Omega}$.

Sketch of the proof

The key lemma

Lemma

Let $u \in W^{1,1}(B(0, R) \backslash \bar{B}(0, r))$. If there exists $Q>0$ such that

$$
\forall r<|x|=|y|<R, \quad|u(x)-u(y)| \leq Q|x-y|,
$$

then u is continuous on $\overline{B(0, R)} \backslash B(0, r)$.

Estimates on the spheres If u is a minimum, compare u and $u \circ I$ where I is the rotation which maps x to y.

$$
|u(x)-u(y)| \leq \max _{\gamma \in \partial \Omega}|\phi(\gamma)-\phi(I(\gamma))|
$$

A counterexample of Marcellini and Giaquinta

$$
u\left(x_{1}, \ldots, x_{n}\right):=c_{n} \frac{x_{n}^{2}}{\sqrt{\sum_{i=1}^{n-1} x_{i}^{2}}}, \Omega:=\left\{\sqrt{\sum_{i=1}^{n-1} x_{i}^{2}}<1, x_{n}>1\right\}
$$

solution of

$$
\sum_{i=1}^{n-1} \frac{\partial}{\partial x_{i}}\left(u_{x_{i}}\right)+\frac{\partial}{\partial x_{n}}\left(u_{x_{n}}^{3}\right)=0
$$

Take

$$
a(p)=\left(p_{1}, \ldots, p_{n-1}, h\left(p_{n}\right)\right)
$$

with $h\left(p_{n}\right)=p_{n}^{3}$ when $p_{n}>2 c_{n}$.

