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A problem in the Calculus of Variations

To minimize J : u 7→
∫

Ω

L(∇u(x)) dx+
(∫

Ω

G(x,u(x)) dx

)β

u|∂Ω = φ

Framework
I Ω ⊂ Rn, bounded open set,
I φ : ∂Ω → R Lipschitz continuous,
I L : Rn → R and G : Ω× R → R are C1.

The Euler equation

div [a(∇u)] + F [u](x) = 0

a(ξ) = ∇L(ξ) , F [u](x) = β

(∫
Ω

G(x,u) dx

)β−1

Gu(x,u)
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A nonlinear elliptic equation

∫
Ω

a(∇u).∇η − F [u]η = 0 ∀ η ∈ C∞
c (Ω),

u ∈ W 1,1(Ω) , tr u|Ω = φ , a(∇u) and F [u] ∈ L1
loc(Ω)

Assumptions on a

I a ∈ C0(Rn, Rn) and ∃ µ > 0 s.t.

(a(ξ)− a(ξ′)).(ξ − ξ′) ≥ µ|ξ − ξ′|2

Assumptions on F

I ∀M > 0, |u|∞ ≤ M ⇒ |F [u]| ≤ C(M),
I when un → u uniformly on Ω, then F [un] → F [u] a.e.
I growth assumptions:

F [u](x) sgnu(x) ≤ C|u|β2∗ |u(x)|γ−1 with β + γ < 2.
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∫
Ω

a(∇u)(x).∇η(x)−F [u](x)η(x) = 0 η ∈ C∞
c (Ω)

Existence and regularity do not follow from the classical Schauder’s theory:

I a is not even C1 but merely continuous,
I even if a were smooth, it would not necessarily satisfy

µ(1 + |ξ|)τ |ζ|2 ≤
∑
i,j

∂ai

∂xij
(ξ)ζiζj ≤ ν(1 + |ξ|)τ |ζ|2 (τ > −1)

Existence does not follow either from Visik’s theory

I requires the additional growth assumption

|a(ξ)| ≤ ν|ξ|p−1 + ν′

I so that for η ∈ W 1,p(Ω), a(∇u) ∈ Lp′

=⇒ a(∇u).∇η ∈ L1(Ω).
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Hartman-Stampacchia’s strategy

Quasi solution u ∈ Lipφ(Ω,K) is a K quasi solution (K > 0) if∫
Ω

a(∇u).(∇v −∇u)− F [u](v − u) ≥ 0 ∀v ∈ Lipφ(Ω,K).

Theorem
For each K, there exists a K quasi solution.

A priori bounds

I L∞(Ω) a priori bound on the K quasi solutions,
I L∞(Ω) a priori bound on the gradients of the K quasi solutions.

Convergence of the quasi solutions to a Lipschitz solution

5 / 20



L∞ bound on ∇u: Rado-Haar Lemma
For τ ∈ Rn s.t. Ω ∩ (Ω− τ) 6= ∅, use as a test function of the quasi solution u

uτ (x) := u(x + τ).

Ω Ω−τ

τx y = x−y

A maximum principle on the gradient

|u(x)− u(y)| ≤ sup
x′∈Ω,y′∈∂Ω
|x′−y′|≤|x−y|

|u(x′)− φ(y′)|+ C|x− y|.
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Lower and upper barrier

Definition
v : Ω → R is a lower barrier at γ ∈ ∂Ω if there exists Q > 0 s.t.

I v ∈ Lip (Ω,Q),
I v(γ) = φ(γ),
I v is not larger than any K quasi solution on Ω, for any K ≥ Q.

Rado Haar Lemma + barriers =⇒ Lipschitz a priori bound

Definition (Bounded Slope Condition)

φ : ∂Ω → R satisfies the bounded slope condition if it is the restriction of a
convex function defined on Rn and also the restriction of a concave function
defined on Rn.
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The bounded slope condition

γ δ

(δ,ϕ(δ))(γ,ϕ(γ))
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An existence theorem

div [a(∇u)] + F [u](x) = 0

u|∂Ω = φ

Theorem (Hartman-Stampacchia)

Assume that
I φ satisfies the bounded slope condition,
I (a(ξ)− a(ξ′)).(ξ − ξ′) ≥ µ|ξ − ξ′|2, µ > 0,

I F [u] locally bounded, continuous + growth assumptions.
Then there exists a solution which is W 1,∞(Ω).

The bounded slope condition: A restrictive condition

I Ω necessarily convex,
I φ is affine on the faces of ∂Ω,

I φ is C1,1 if Ω is C1,1
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The lower bounded slope condition

Definition
φ satisfies the lower bounded slope condition if φ is the restriction to ∂Ω of a
convex function defined on Rn.

Less restrictive than the full bounded slope condition

I does not imply the convexity of Ω
I φ is semiconvex when Ω is convex and C1,1

A general principle due to Clarke

A lower barrier is enough to obtain local Lip-
schitz estimates when Ω is convex.
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Dilations instead of translations

γ

Ωλ

Ω

Ωλ := λ(Ω− γ) + γ , uλ(x) = λu(
x− γ

λ
+ γ).
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Existence of locally Lipschitz solutions

Theorem
Assume that

I Ω is convex,
I φ satisfies the lower bounded slope condition,
I (a(ξ)− a(ξ′)).(ξ − ξ′) ≥ µ|ξ − ξ′|2, µ > 0,

I F [u] locally bounded, continuous + growth assumptions.
Then there exists a solution which is L∞ ∩W 1,2 ∩W 1,∞

loc (Ω). Moreover, if Ω is
a polyhedron, then u is Hölder continuous on Ω.
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Implicit barriers and continuity I

Definition
An implicit barrier is a barrier obtained as the solution of an auxiliary
problem stated on a larger domain Ω0 ⊃ Ω.

Let u be the solution obtained previously and γ ∈ ∂Ω. We consider

(E0) div [a(∇v)](x)+F [u](x) = 0 , v|∂Ω0 = φ0

where Ω0 a cube enclosing Ω with γ ∈ ∂Ω0,

φ0 = φ(γ) + Kφ|x− γ|+ L|x− γ|2 (for a suitable large L )
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Implicit barriers and continuity II
γ

Ω

Ω0

φ

0φ

φ0 = φ(γ) + Kφ|x− γ|+ L|x− γ|2

I L large enough =⇒ φ0 lower barrier for (E0)
I ‘the’ solution u0 of (E0) ≥ φ0 ≥ φ and is continuous
I u0 is an implicit upper barrier at γ: u0 ≥ u on Ω.

Theorem

The solution u is Hölder continuous on Ω.
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Nonconvex domains: a simple case

The radial case on an annulus

I Ω = B(0,2) \B(0,1) in Rn

I a(ξ) = l(|ξ|)ξ/|ξ|
I l : R+ → R+ bijective
I F [u] = 0
I φ = 0 on ∂B(0,1) and

φ = C > 0 on ∂B(0,2)

0 C

The solution is

u(x) =
∫ |x|

1

l−1(
λ

rn−1
) dr

for a suitable λ ∈ R.

15 / 20



An existence result on nonconvex domains

Theorem
Assume that

I Ω satisfies a uniform exterior sphere condition,
I φ is constant on each connected component of ∂Ω,

I a(p) = l(|p|)p/|p| continuous with l(t)− l(s) ≥ µ(t− s), ∀s < t,

I F [u] is locally bounded, continuous +growth assumptions.
Then there exists a Lipschitz solution.

Ω

r

γ
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Sketch of the proof

C

ϕ2

ϕ3

Ω0

Ω

ϕ
1

γ
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A variational problem

To minimize J : u 7→
∫

Ω

f(|∇u(x)|) dx

u|∂Ω = φ

Theorem
Assume that

I f strictly convex, f(|ξ|)/|ξ| → +∞ when |ξ| → +∞,

I φ is Lipschitz continuous,
I Ω satisfies the uniform exterior sphere condition.

Then the solution u is continuous on Ω.

18 / 20



Sketch of the proof
The key lemma

Lemma

Let u ∈ W 1,1(B(0,R) \B(0,r)). If there exists Q > 0 such that

∀r < |x| = |y| < R, |u(x)− u(y)| ≤ Q|x− y|,

then u is continuous on B(0,R) \B(0,r).

Estimates on the spheres If u is a minimum, compare u and u ◦ I where I is
the rotation which maps x to y.

x

y=I(x)

|u(x)− u(y)| ≤ max
γ∈∂Ω

|φ(γ)− φ(I(γ))|
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A counterexample of Marcellini and Giaquinta

u(x1, . . . ,xn) := cn
x2

n√∑n−1
i=1 x2

i

,Ω := {

√√√√n−1∑
i=1

x2
i < 1,xn > 1}

solution of
n−1∑
i=1

∂

∂xi
(uxi

) +
∂

∂xn
(u3

xn
) = 0.

Take
a(p) = (p1, . . . ,pn−1,h(pn))

with h(pn) = p3
n when pn > 2cn.
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